Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer
نویسندگان
چکیده
The solubility enhancement of poorly soluble compounds is an important task in pharmaceutical technology as it leads to better bioavailability and a more efficient application. Fused dispersions (FDs) of simvastatin (SIM) using PEO-PPO block copolymer were prepared which paved the way for the formation of an amorphous product with enhanced dissolution and bioavailability. The accumulative solubility of simvastatin (SIM) from PEO-PPO block copolymer (Lutrol NF 127 prill surfactant) was found to be superior to the drug alone which may be due to the increased oxyethylene content that played the major role in solubility enhancement. A 3(2) full factorial approach was used for optimization wherein the temperature to which the melt-drug mixture cooled (X1) and the drug-to-polymer ratio (X2) were selected as the independent variables and the time required for 90% drug dissolution (t90%) was selected as the dependent variable. A low level of X1 and a high level of X2 were suitable for obtaining higher dissolution of SIM from SIM FDs. On increasing melt to cool drug temperature, t90% increased thus improving dissolution rate of FD2 batch with the maximum drug release (99.63%) in 120 min. The optimized FDs were characterized by saturation solubility study, drug content, in-vitro dissolution, fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, x-ray diffraction, (1)HNMR spectroscopy and pharmacodynamic evaluation. Capsules containing optimized FDs were prepared and compared with marketed brand (SIMVOTIN®). Finally, it can be concluded that the optimized FDs of SIM ameliorate the solubility and dissolution of drug with improved pharmacodynamic activity.
منابع مشابه
Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer
The solubility enhancement of poorly soluble compounds is an important task in pharmaceutical technology as it leads to better bioavailability and a more efficient application. Fused dispersions (FDs) of simvastatin (SIM) using PEO-PPO block copolymer were prepared which paved the way for the formation of an amorphous product with enhanced dissolution and bioavailability. The accumulative s...
متن کاملPreparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer
The solubility enhancement of poorly soluble compounds is an important task in pharmaceutical technology as it leads to better bioavailability and a more efficient application. Fused dispersions (FDs) of simvastatin (SIM) using PEO-PPO block copolymer were prepared which paved the way for the formation of an amorphous product with enhanced dissolution and bioavailability. The accumulative s...
متن کاملBlock copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology.
We report here on the segment effects of poly(ethylene oxide)-containing block copolymers (PEO-BCP) on the reduction activity for tetrachloride gold(III) ([AuCl(4)](-)), interfacial activity for gold surface, colloidal stability, and morphology of gold nanoparticles formed in aqueous solutions. In particular, the effects of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), polyethylene (...
متن کاملSynthesis and characterization of self-assembling block copolymers containing bioadhesive end groups.
3,4-Dihydroxyphenyl-L-alanine (DOPA) is an unusual amino acid found in mussel adhesive proteins (MAPs) that is believed to lend adhesive characteristics to these proteins. In this paper, we describe a route for the conjugation of DOPA moieties to poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers. Hydroxyl end groups of PEO-PPO-PEO block copolymers we...
متن کاملInteractions of charged porphyrins with nonionic triblock copolymer hosts in aqueous solutions.
The extent and locus of solubilization of guest and self-assembling surfactant host molecules in aqueous solutions are influenced by a variety of hydrophobic and hydrophilic interactions, as well as by more specific interactions between the various species present. By using a combination of two-dimensional heteronuclear 13C[1H] NMR correlation experiments with pulsed-gradient NMR diffusion and ...
متن کامل